ON THE STRUCTURE OF CERTAIN VALUED FIELDS

JUNGUK LEE AND WAN LEE

ABSTRACT. For any two complete discrete valued fields K7 and Kg of mixed
characteristic with perfect residue fields, we show that if each pair of n-th
residue rings is isomorphic for each n > 1, then K; and Kj are isometric
and isomorphic. More generally, for ni,ngs > 1, if no is large enough, then
any homomorphism from the ni-th residue ring of K; to the na-th residue
ring of K9 can be lifted to a homomorphism between the valuation rings. We
can find a lower bound for na depending only on Kg. Moreover, we get a
functor from a category of certain principal Artinian local rings of length n to
a category of certain complete discrete valuation rings of mixed characteristic
with perfect residue fields, which naturally generalizes the functorial property
of unramified complete discrete valuation rings. The result improves Basarab’s
generalization of the AKE-principle for finitely ramified henselian valued fields,
which solves a question posed by Basarab, in the case of perfect residue fields.

1. INTRODUCTION

In this paper, we consider some problems on valued fields arising from the inter-
action of number-theoretic approaches and model-theoretic approaches. In number
theory, it is well-known that the following are equivalent.

e There is an isometric isomorphism between two complete unramified dis-
crete valued fields K7 and K» of mixed characteristic (0,p) with perfect
residue fields.

e There is an isomorphism between residue fields of K7 and K.

In model theory, as a counterpart, there is a principle called Ax-Kochen-Ershov-
principle(briefly, AKE-principle) which states the following are equivalent.

e Two absolutely unramified henselian valued fields K; and K5 of the same
type of mixed characteristic (0,p) with value groups as Z-groups are ele-
mentarily equivalent.

e Residue fields of K7 and K> are elementarily equivalent.

We introduce more elementary classes of valued fields satisfying the AKE-principle:
a) Algebraically closed valued fields by Robinson in [28].

b) Henselian fields with residue fields of characteristic 0 by Ax and Kochen in [4]
and independently by Ershov in [14].

¢) p-adically closed fields by Ax and Kochen in [4] and independently by Ershov in
[14].

d) Algebraically maximal Kaplansky fields by Ershov in [15] and independently by
Ziegler in [31].

e) Tame fields of equal characteristic by Kuhlmann in [22].

f) Separably tame fields of equal characteristic by Kuhlmann and Pal in [23].
Some elementary classes of valued fields with additional structures are also known
to satisfy the AKE-principle.
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g) The ring of Witt vectors after adding a predicate for a unique multiplicative set
of representatives for the residue field by van den Dries in [12].

h) Some valued difference fields by Bélair, Macintyre, and Scanlon in [9], by Azgin
and van den Dries in [1], and by Pal in [26].

Most of all, in this paper, we are interested in finitely ramified valued fields.
Prestel and Roquette in [27] considered the class of p-closed fields which are finite
extensions of p-closed fields so that the residue fields are finite. They showed that
the theory of p-closed fields of a fixed p-rank is model complete. Basarab in [6]
extended this result and generalized the AKE-principle for the case of finitely ram-
ified valued fields. Actually, he showed that for any two finitely ramified henselian
valued fields of mixed characteristic, they are elementarily equivalent if and only
if their value groups are elementarily equivalent, and their n-th residue rings are
elementarily equivalent for each n > 1, where the n-th residue ring is the quotient
of the valuation ring by the n-th power of the maximal ideal. And the theory of a
finitely ramified henselian valued field is model complete if and only if each theory
of its n-th residue ring and its value group are model complete. Motivated from the
relation between number theory and model theory for the unramified case, we ask
whether there is a number-theoretic part which corresponds to Basarab’s result on
the AKE-principle:

Question 1.1. Are two finitely ramified complete discrete valued fields Ki and
K5 of mized characteristic with perfect residue fields isomorphic if the n-th residue
rings of K1 and Ky are isomorphic for eachmn > 17

We report some known necessary and sufficient conditions for certain valued fields
to be isomorphic. For a p-valued field (K, v) and any two gp-closed fields (Ly, ) and
(La,v) of the same p-rank as (K, v), Prestel and Roquette in [27] showed that L;
and Lo are K-isomorphic as valued fields if and only if the n-th powers of L; and Lo
contained in K are the same for each n. Basarab and Kuhlmann in [7] introduced
some structure called the mixed §-structure for each ¢ in the value group of a valued
field. By using these mixed structures, for any two henselian algebraic extensions
(L1,v) and (La, v) of a given valued field (K, v), they gave a criterion for (L1, ) and
(La,v) to be K-isomorphic as valued fields under a certain condition with respect
to tame extensions.

We return to the unramified case. The previous equivalence for the unramified
case in number theory is a corollary of the following well-known theorem([29]).

e For any perfect field k of characteristic p, there exists a unique unramified
complete discrete valuation ring R, called the ring of Witt vectors of k, of
characteristic 0 which has k as its residue field.

e For any two unramified complete discrete valuation rings R; and Ry of
mixed characteristic with perfect residue fields k1 and ko respectively, sup-
pose that there is a homomorphism ¢ : k& — ks. Then there is a unique
lifting homomorphism ¢ : R1y — Ry such that g induces ¢.

In categorical setting, the theorem above is equivalent to the following statement.

e Let C, be a category of complete unramified discrete valuation rings of
mixed characteristic (0,p) with perfect residue fields and R, a category
of perfect fields of characteristic p. Then C, is equivalent to R,. More
precisely, there is a functor L' : R, — C,, which satisfies:



ON THE STRUCTURE OF CERTAIN VALUED FIELDS 3

— ProL/ is equivalent to the identity functor Idgz, where Pr:C, — R,
is the natural projection functor.
— L' oPr is equivalent to Ide, .

Based on Question 1.1 and the statements above, we raise generalized questions.

Question 1.2. (1) For a principal Artinian local ring R of length n with cer-
tain conditions, is there a unique complete discrete valuation ring R which
has R as its residue ring ?

(2) For any two finitely ramified complete discrete valuation rings Ry and R
of mized characteristic with perfect residue fields, let Ry ,,, and Ry, be the
ny-th residue ring of Ry and the ny-th residue ring of Re respectively. Under
certain conditions on ny and na, giwen a homomorphism ¢ : Ry ,, —
Rs p,, is there a unique lifting homomorphism g : R1 — Ry such that g
induces ¢ 7

Question 1.3. Let Cp, . be a category of complete discrete valuation rings of mized
characteristic (0,p) with perfect residue fields and absolute ramification index e.
Let Ry, be a category of principal Artinian local rings of length n with certain
conditions. Let Pry, : Cp . —> Ry . be the natural projection functor. Is there a
functor L : Ry . — Cp e which satisfies:

e Pr, oL is equivalent to Idgn .

o LoPr, is equivalent to Idcp’;.

Question 1.2.(2) is not true in general, that is, there is a homomorphism ¢ :
Ri.n, — Ran, such that any homomorphism from R; into Ry does not induce ¢.
In this paper, the main result shows that for sufficiently large no, if there is a given
homomorphism ¢ : Ry ,, — Ran,, then there is a homomorphism g : Ry — R»
rather naturally related with ¢. In the beginning of Section 2, we show that Ques-
tion 1.1 is true in a special case of local fields. The main ingredient in the proof is
to use the compactness of the valuation rings of local fields. In order to extend the
result to the case of infinite perfect residue fields, we need the Witt subring. Since
valuation rings are not compact in general, we use Krasner’s lemma instead. More
precisely, the main result shows that for sufficiently large ns, if there is a given ho-
momorphism ¢ : Ry ,, — Ra p,, then there is a homomorphism L(¢) : Ry — Rs
satisfying a lifting property similar to that of the unramified case. Even though the
construction of L(¢) depends on the choice of uniformizer, it turns out that L(¢)
does not depend on the choice of uniformizer. Moreover, when ¢ is an isomorphism,
so is L(¢). This provides an answer for Question 1.1. We define L(¢) as the lifting
of ¢ even though L(¢) does not induce ¢. The lifting map L provides an answer
for Question 1.2.(2) and Question 1.2.(1) where the latter follows from L and the
Cohen structure theorem for complete local ring([19]).

In Section 3, we concentrate on Question 1.3. By using the fact that the definition
of the lifting map L is independent of the choice of uniformizer, we can show
that L is compatible with composition of homomorphisms between residue rings.
More precisely, L(¢2 o ¢1) = L(¢2) o L(¢1) for any ¢1 : Ri,, —> Ron, and
¢2 1 R p, —> R3pny. This defines a functor L : Ry . — C,, . for sufficiently large
n. We prove that a lower bound for n depends only on the ramification index e and
the prime number p. Even though L does not give an equivalence between R, .
and Cp ., it turns out that L satisfies a similar functorial property to L' : R, — C,.
This provides an answer for Question 1.3.
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We define the lifting number for C,, . as the least number n such that there is a
lifting functor L : Ry, — Cp .. For the tamely ramified case, we prove that the
lifting number for Cp, . is e + 1 when e > 2. For the wildly ramified case, we have
that the lifting number for C, . is at least e+ 1. Finally we conclude that the lifting
number for C, . is either = 1 or > 3 for any case. We note that the lifting number
for Cp . is 1 if and only if e = 1.

In [6], Basarab posed the following question:

Question 1.4. Given a finitely ramified henselian valued field K of ramification
index e > 2, is there a finite integer N’ > 1 depending on K such that any other
finitely ramified henselian valued field of the same ramification indezx e is elementar-
ily equivalent to K if and only if their N'-th residue rings are elementarily equivalent
and their value groups are elementarily equivalent?

In Section 4, for given valued fields, each of whose value groups has a least positive
element, we reduce the problem determining elementary equivalence between them
to the problem determining whether certain complete discrete valued fields related
with them are isomorphic. Using results in Section 2, we improve Basarab’s result
on the AKE-principle which gives a positive answer for Question 1.4 when the
residue fields are perfect.

Given a finitely ramified henselian valued field K, Basarab([6]) denoted the min-
imal number N’ which satisfies the equivalence in Question 1.4 by A\(T) for a com-
plete theory T of K. A\(T') can be 1 even when K is not unramified. Under certain
conditions, we calculate A(T') explicitly for the tame case and get a lower bound
of A\(T) for the wild case. As a special case, we conclude that A(T") is 1 or e 4 1 if
p fe, and A(T) > e + 1 if ple when K is a finitely ramified henselian subfield of C,,
with ramification index e.

We introduce basic notations and terminologies which will be used in this paper.
We denote a valued field by a tuple (K, R, m, v, k,T") consisting of the following data
: K is the underlying field, R is the valuation ring, m is the maximal ideal of R, v
is the valuation map, k is the residue field, and I" is the value group. Hereafter, the
full tuple (K, R,m,v, k,T') will be abbreviated in accordance with the situational
need for the components.

Definition 1.5. Let (K,v,k,T) be a valued field of characteristic zero. We say
(K,v) is absolutely unramified if char(k) = 0, or char(k) = p and v(p) is the
minimal positive element in T for p > 0. We say (K,v) is absolutely ramified if it
s not absolutely unramified.

Definition 1.6. Let (K,v,k,T', R) be a valued field whose residue field has prime
characteristic p.
(1) We say (K,v,k,T, R) is absolutely finitely ramified if the set {y € T'| 0 <
v < wv(p)} is finite. The cardinality of {y € T| 0 <y < v(p)} is called the
absolute ramification index of (K,v), denoted by e(K,v) or e(R). If K or
v is clear from context, we write e(K) or e for e(K,v). For x € R, we
write e, (z) == [{y € T| 0 <y < wv(x)}|. If there is no confusion, we write
e(z) for e, (x)
(2) Let (K,v,k,T',R) be finitely ramified. If p does not divide e, (p), we say
(K, v) is absolutely tamely ramified. Otherwise, we say (K, v) is absolutely
wildly ramified.
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Note that if a valued field of mixed characteristic has the absolute finite ramification
index, then its value group has the minimum positive element.

Definition 1.7. Let (K1,v1) and (Kao,v2) be valued fields. Let Ry and Rs be
subrings of K1 and Ko respectively. Let f : Ry — Ro be a injective ring homomor-
phism. We say f is an isometry if for a,b € Ry,

vi(a) > v1(b) < va(f(a)) > va(f(b)).

Definition 1.8. For a local ring R with maximal ideal m, we denote R/m™ by R,,,
and we call R,, the n-th residue ring of R. In particular, Ry is the residue field of
R.

For each m > n, let pr,, : R — R,, and pr}’ : R,, — R, be the canonical projec-
tion maps respectively. For R-algebras S; and Sy, we denote the set of R-algebra
homomorphisms from S; to S by Hompg(S1,52), and we briefly write Hom(S1, S2)
for Homgz(S1,.52). We denote the set of R-algebra isomorphisms by Isog(S1,52),
and we write Iso(S7, S2) for Isoz (S, 52). We write Iso(R) for Iso(R, R). We denote
a primitive n-th root of unity by (,.

2. LIFTING HOMOMORPHISMS
We start from the following proposition.

Proposition 2.1. Let Ky and K» be finite extensions of Q, for some prime p.
Let Ry, and Ry, be the n-th residue rings of Ki and Ky respectively. Suppose
that there is an isomorphism t,, : Ri, — Ra, for each n > 0. Then there is an
isomorphism v : K1 — Ko over Q.

Proof. (1) First method: Let Iso(R,) be the set of isomorphisms from R; , onto
Ry, and &,11,n, be the natural reduction map from Iso(Ry+1) to Iso(R,). Then
{Iso(Ry), &nt1,n} forms an inverse system. Since each residue ring R;,, is finite,
Iso(R,,) is finite,in particular compact for each n. By the theory of topological
algebra, l'gllso(Rn) is not empty([25]). This shows there exists an isomorphism
t: K1 — K. ¢ is defined over Q, since all elements of Iso(R,,) are continuous.

(2) Second method: Let Ry and Ry be valuation rings of K; and Ks respec-
tively. Take an element a in Ry satisfying K; = Qp(a). Let f be the monic
irreducible polynomial of a over Z,. Consider a sequence (a], € R2),>1 such that
pry ,(ay,) = tn(pry ,(a)) where pr; ,, denotes a n-th natural projection from R; to
R; . We note that each ¢,, is an Z,-algebra isomorphism since ¢,, is continuous.
Since f(a) = 0, f(tn(pry ,(a))) = tn(f(pry,(a))) = tn(pry,(f(a))) =0 in Rop.
First equality follows from that fact that ¢, is an Z,-algebra homomorphism. Hence,
f(pry,(ay,)) = pra,(f(ay,)) = 0in Ry ,, that is, f(a;,) € mg where my is the maxi-
mal ideal of Ry. Since Rj is compact, there is a subsequence (ay,, ) which converges
to a’ € Ry, and since f is continuous, f(a’) = lim,, s f(a;,,) =0 in Ry. Thus K>
contains a zero a’ of f. Therefore, there is an injection ¢ : K1 — Ka, a + a’ over
Qp, and hence, we obtain an inequality [K; : Qp] < [Ky : Q,] between the field
extension degrees. Similarly, one can show [K7 : Q] > [K2 : Q,]. Hence, ¢ is an
isomorphism over Q,.

O

Since the proof of the fact that the inverse limit of Iso(R,,) is not empty uses Zorn’s
lemma, we can only prove the existence of an isomorphism in the first method. The
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second method does not use Zorn’s lemma and the given isomorphism is more easier
to construct. But both methods use the fact that the homomorphisms are defined
over Q, or Z, crucially. For the case of infinite perfect residue fields, we need the
absolutely unramified discrete valuation rings called the ring of Witt vectors. By
Krasner’s lemma, it suffices to consider a single n-th residue ring for sufficiently
large n.

The following theorem is well-known.

Theorem 2.2. (1) Letk be a perfect field of characteristic p. Then there exists
a complete discrete valuation ring of characteristic 0 which is absolutely
unramified and has k as its residue field. Such a ring is unique up to
isomorphism. This unique ring is called the ring of Witt vectors of k,
denoted by W (k).

(2) Let Ry and Ry be complete discrete valuation rings of mized characteristic
with perfect residue fields k1 and ko respectively. Suppose Ry is absolutely
unramified. Then for every homomorphism ¢ : ki — ko, there exists a
unique homomorphism g : Ry —> Rs making the following diagram com-
mutative:

R, L) Ry

Prl,ll Pr2,1l

lekQ

Proof. Chapter 2, section 5 of [29].
O

Before stating main theorems, we need some lemmas.

Lemma 2.3. Let R be a complete discrete valuation ring of characteristic 0 with
perfect residue field k of characteristic p and corresponding valuation v. Then
W (k) can be embedded as a subring of R and R is a free W (k)-module of rank v(p).
Moreover, R = W (k)[r] where 7 is a uniformizer of R.

Proof. Chapter 2, Section 5 of [29] O

Lemma 2.4. Let A be a ring that is Hausdorff and complete for a topology defined
by a decreasing sequence a1 DO ag D ... of ideals such that a, - 0y C Q. Assume
that the residue ring Ay = A/ay is a perfect field of characteristic p. Then:

(1) There exists one and only one system of representatives h : Ay — A which
commutes with p-th powers: h(XP) = h(A\)P. This system of representatives
is called the set of Teichmydiller representatives.

(2) In order that a € A belong to S = h(A1), it is necessary and sufficient that
a be a p"-th power for all n > 0.

(8) This system of representatives is multiplicative which means

h(Ap) = h(A)h(p)
for all \,p € Ay.
(4) S contains 0 and 1.
(5) S\ {0} is a subgroup of the unit group of A.

Proof. (1)(2)(3): Chapter 2, Section 4 of [29]
(4): 0 and 1 satisty (2).
9):

a
(5): (3) and (4) show that S\ {0} is a subgroup of the unit group of A. O



ON THE STRUCTURE OF CERTAIN VALUED FIELDS 7

Lemma 2.5. Let Ry and Ry be discrete valuation rings of characteristic 0 with
residue characteristic p. Let m; be the mazimal ideal of R; generated by m; and v;
corresponding discrete valuation of R; for i = 1,2. Suppose there is a homomor-
phism ¢ : R1 — Ro . If n > avs(p) for some real number a > 1, kernel of ¢ is
equal to m{* for some m > avy(p).

Proof. Let my = my/m% be the maximal of Ry ,,. If we write ¢(m1)Rs , = m3,
ﬁgZ(p) = pR2,n = L( )R2 n
= (’/T?(p)) R2 ;Vl(p)

In particular © = vo(p)/v1(p) and ve(p)/v1(p) is a positive integer. Suppose

mvg (p)

T Rop =T, = 0

in Ry, for some m. Then we obtain

mvy(p)
1(p)
and hence m > avy(p). O

>n > avy(p),

For any field L, L9 denotes a fixed algebraic closure of L. Let (L,v) be a
valued field whose value group is contained in R. If L is of characteristic 0 and
of residue characteristic p, we define a normalized valuation 7 on L of v by the
property 7(p) = 1, that is, v(p)v = v. We denote an extended valuation of 7 on
L%9 by 7. When L is henselian, 7 is unique.

Lemma 2.6. Let (Ki,v1) and (K, vs) be valued fields whose value groups are
contained in R. Let f : K1 — Ky be an isometric homomorphism. Suppose K, is
henselian. Let f : K™ — K39 be an extended homomorphism of f. Then f is
an isometry.

Proof. There are two valuations on f(K®9), 770 f~1 and Va|f(gatay where 13| eatay
1 1

is the restriction of 7 to f(K9). Since f is an isometry, the restrictions of 7 o f 1
and V~2|J~;<Kalg) to f(K1) are equivalent, in fact, they are equal since (v; o f~1)(p) =
1

172|]7(K?lg)(p) = 1. Since K is henselian, f(K;) is Henselian. Hence, 77 o f~! is

equal to 1] Tkt by the henselian property. This shows that ]?is an isometry. [

Let R be a complete discrete valuation ring of mixed characteristic with perfect
residue field. Let 7 be a uniformizer of R and v corresponding valuation of R. Let
L and K be the fraction fields of R and W (k) respectively. We denote the maximal
number

max {7(7 — o(7)) : 0 € Homg (L, L), o(r) # 7}
by M(R), or M(L)x.

Definition 2.7. Let Ry and Ry be complete discrete valuation rings of character-
istic 0 with perfect residue fields k1 and ko of characteristic p respectively. Let m;
be the mazimal ideal of R; generated by m; and v; corresponding valuation of R; for
i =1,2. Let L; and K; be the fraction fields of R; and W (k;) for i = 1,2 respec-
tively. For any homomorphism ¢ : Ry n, — Ran,, we say that a homomorphism
g: Ry — Ry is a (n1,n9)-lifting of ¢ at w1 if g satisfies the following:
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o There exists a representaive 5 of ¢p(m + mi') which satisfies
72(g(m) = B) > max {7 (o (g(m) = B) : o(g(m)) # g(m) }

where o runs through all of Homg, (L, L3").
® Pred © Pri; = PIra ;g where Preq,1 @ k1 — ko denotes the natural reduc-
tion map of ¢.
When such g is unique, we denote g by Lz, ny ny (). When Ly, n, no (@) exists for
all ¢ : Ry, — Rap,, we write Ly, ny ny : Hom(Ry p,, R2 n,) — Hom(R1, Ra).
When ny = no = n, we briefly write L, n, n, = Lz, n and say that Ly, ., is the
n-lifting at ;.

If novy (p) /v2(p) < ny, there is a natural projection map pr”*"2 : Hom(R;, Re) —
Hom(Ry y,, R2,n,) such that for any g in Hom(Ry, Ry), pry,, 09 = pr*t"2(g) o
pry ,, - In particular, g is a (ni,ng)-lifting of pr"*"2(g) at 7. Note that when
ng > vo(p) and Hom(R ,,,, R2 pn,) is not empty, navy (p)/v2(p) < ni by Lemma 2.5.

The definition of liftings does not depend on the choice of uniformizer. In order
to prove this, we need the following lemmas.

Lemma 2.8. Let R; be a complete discrete valuation ring of characteristic 0 with
perfect residue field k; of characteristic p fori =1,2. Let m; be the maximal ideal of
R, generated by m; and S; the set of Teichmiller representatives of R; fori=1,2.
(1) For any homomorphism ¢ : Ri,, — Ran,, &(S1 + my') is contained
in So + my2. Similarly, for any homomorphism g : Ry — Ra, g(S1) is
contained in Ss.
(2) For any homomorphism ¢ : Ry n, — Ran,, & (W (k1) + mi')/ml") is
contained in (W(ke) + mg?)/m32. Similarly, for any homomorphism g :
Ry — Ry, g(W(ky)) is contained in W (ks).
Proof. (1) Since W (k;)/pW (k;) = R;/m; = k;, S; is contained in W (k;) by Lemma
2.4. For any A € Sy, let n, be any representative of (AY/?" + m}*). We note
that A'/P" exists in S; by Lemma 2.4 and 72" 4+ mb> = ¢(\ +mf"). If 0, is any
other representative of ¢(A\'/P" + mJ*), then 7, — s € mj>. Hence, if we write
Ns = 05 + my2a for some a in Ry, the following binomial expansion
e = (05 +my2a)”
=07 +p°0” 'nla+ ...+ (nha)?
shows P —0P" € m3. Since n’, | is a representative of (/P +m]"), the calculation
above shows that {ng’s} is a Cauchy sequence and limg_, ng‘“’ is well-defined in R».
Since n?" +mjy? = (A +m]*) and m}? is topologically closed in Ry,

¢ (A+mit) = (Slggo né’s) +my°.
Similarlly, we have
() = () oo
Since

lim 77" = ( lim 7" 8
s Ms )

S§— 00 5—00
we obtain
. pS
lim n? € S

§—00
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by Lemma 2.4.

Since g(A\)'/? = g(\'/P), g(S}) is contained in Sy by Lemma 2.4.

(2) For any element a in W (k;), we can write a = Y~ j A\,p" uniquely where A,
is in S7 by Lemma 2.4. Then by Lemma 2.8.(1), g(a) = >_.2, g(Ar)p" is in W (k2).

Let ¢res : (W(k1) + mi*)/m{* — Rgy,, be the restrition map of ¢ to the
domain W (ky)/(W (k1) m]?) =2 (W (k1) + m]')/mT'. By Theorem 2.2, we define
gres to be the (1,1)-lifting of @resrea,1 Where @resred,1 @ k1 — ko denotes the
natural reduction map of ¢es. We claim that g,.s induces ¢,.s. For any A in Sy,
gres(A) = 7 where 7 is a unique representative of ¢(A + m]'*') contained in So by
Lemma 2.4. Since gyes is a ring homomorphism, gres(a) = Y . 7,p" where 7, is a

T
unique representative of ¢,.cs(A, + m7"') which is contained in S. This shows

o0
Gres(a) +m"2 = <Z Trpr> + my?
r=0

= Z P bres ()\r + m?l)
r=0

= Pres(a+ mrlll)v

and hence, gp.s induces ¢s. Since the image of g,..s is contained in W (ks), the
image of ¢y is contained in (W (k2) + m5y?)/my2.
O

Lemma 2.9. Let Ry and Ry be complete discrete valuation rings of characteristic
0 with perfect residue fields k1 and ko of characteristic p respectively. Let m; be the
maximal ideal of R; generated by m; and v; corresponding valuation of R; for i =
1,2. Let L; and K; be the fraction fields of R; and W (k;) for i = 1,2 respectively.
(1) Let « be a uniformizer of Ry other than . Then M(R1)r, = M(R1)a-
We briefly write M(Ry)r, = M(Ry).
(2) Suppose [L1 : K1] = [La : Ka| = e, that is, v1(p) = va(p) = e. Suppose
there is an isometry g : Ly — Lo. Then M(Ry) = M(Rs).

Proof. (1) By Lemma 2.4, we can write o« = >~ A\,m] where A, is a Teichmiiller
representative of Ry for each r and Ay # 0. Since Ry/my = ky, A, is in W (kq) for
each 7 by Lemma 2.4. For any ¢ in Homg, (L1, K®9),

a—o(a)= i AT — 0 (i A,ﬁr{)
r=1 r=1

A = o(m)

1
I
—

_ (m _ g(m)) ixr Tfﬂgfl—jg(w{)
§=0

r=1
shows 71 (a — o(a)) = v1(m — o(m1)) since

oo r—1
7 Z)‘T Zﬂ;_l_ja(ﬁ) =0.
=0

r=1

We have M(R1)r, = M(R1)a-
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(2) By Lemma 2.8.(2), g(K1) is contained in Ks. Let f; be the monic irreducible
polynomial of 71 over W (ky). Since g is an isometry, we have 73(g(m1)) = 71(m1) =
1/e, and hence, g(m) is a uniformizer of Ly. Let §: L% —s L3 be an extended
homomorphism of g. Let g(f1) be the monic irreducible polynomial of g(m;) over
Ks. If we write f; = ¢ + ...a1x + ag, we have

9(f1) = 2+ ...g(a1)x + g(ao)

since g(K7) is contained in Ks. Then by Lemma 2.9.(1) and Lemma 2.6,

M(Ry) = max {2 (g(m ) ) 9(f1)(n) = 0,n # g(m)}
:maX{VQ(g )) fi(m) =0 7717é7r1}
= max {7 (m ) fi(my) = 0,71 #m}
= M(Ry)

O

Proposition 2.10. Let Ry and Ry be complete discrete valuation rings of charac-
teristic 0 with perfect residue fields of characteristic p. Let m; be the mazimal ideal
of R; generated by m; and v; corresponding valuation of R; for i =1,2. Let L; and
K; be the fraction fields of R; and W (k;) for i = 1,2 respectively.

(1) Let g : Ry — Ry be a (n1,n9)-lifting of ¢ : R1,, —> Ran, at m which
satisfies

7 (9(m) — B) > max {7 (7(9(m)) = 8) : o(9(m)) # g(m) }

where o runs through all of Homg, (Ly, L3") and B is a representative of
¢(m1 +mi). Then

max {7 (o(g(m)) = 8) : o (g(m)) # glm) } = M(Ry).

(2) The definition of liftings is independent of the choice of uniformizer of
Ry. More precisely, saying that g : Ry — Ra is a (ny,ne)-lifting of ¢ :
Rin, — Ran, at m is equivalent to the following:

e For any x in Ry, there exists a representative B, of ¢(x + mi*) which
satisfies

U2 (g(x) — Bz) > M(Ry)

L4 (rbred,l o Pr171 = pr2,1 °g
We write Ly, ny .y = Lny n, and say that Ly, , is the (nq, ng)-lifting.

Proof. (1) For o € Homp, (Lo, L3%) with o(g(m1)) # g(m1),
7 (o (9(m) = 8) = (o (g(m) - g(m) + g(m) - )
= min {3 (o (g(m)) — glm)). 2 (a(m) — 5) }
= 2o (9(m)) — 9(m)
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Since va(g(m1) — 8) > va(o(g(m1)) — ). This shows
M(Ry) = max {ﬁl (71'1 — U(m)) co(m) # 7r1}

= max {ﬁz(g(ﬂl) - U(g(m))) to(g(m)) # 9(“1)}
= moaX{V~2(U(9(7Tl)) - 5) : 0(9(771)) # 9(771)}

where the second equality follows from Lemma 2.9.(2) since [K2(g(m1)) : Ka] is
equal to [Ly : K1] and g(m1) is a uniformizer of Ky(g(m1)).

(2) Let g : R — Ro be a (n1,ne)-lifting of ¢ : Ry, — Ry, at mp which
satisfies

7 (9(m) — B) > max {7 (a(9(m)) - 8) : o(9(m)) # g(m) }

where o runs through all of Homg, (LQ,L;ZQ ) and f is a representative of ¢(m +
m{'!). For any z in Ry, we can write z = Y~  A\,mr] where A, is in the set Sy of
Teichmiiller representatives for each r. Then

¢z +mit) = ¢ ((Z m;) + ml“) = (Z nﬁr> +mj?
r=0 r=0

where 7, is a representative of ¢(\, + mj') contained in Sz guaranteed by Lemma
2.8.(1). In particular ) 78" is a representative of ¢(z + mj*), say (3,. By the
second condition of the definition of liftings and Lemma 2.4, we have g(\,.) = 7.,

and hence,
9(x) =g (i AﬂI) = f: rg(m)".
We obtain - i
a(g(x) — Ba) =12 (i} 7rg(m)" — inﬁr>
i [ (stm)—B) S Eg(m)r”ﬁj
> M(Ry) - -
since

7 (9(m1) — B) > max {7 (o (9(m)) = B) s o (g(m)) # g(m) }
= M(Ry).
]

Lemma 2.11 (Krasner’s lemma). Let (K,v) be henseilan valued field whose value
group is contained in R and let a,b € K%9. Suppose a is separable over K(b).
Suppose that for all embeddings o(# id) of K(a) over K, we have

v(b—a)>v(o(a) —a).
Then K(a) C K(b).
Proof. Chapter 2 of [24]. O
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The following theorem shows that there is a unique lifting if we enlarge the
lengths of residue rings.

Theorem 2.12. Let Ry and Ry be complete discrete valuation rings of character-
istic 0 with perfect residue fields k1 and ko of characteristic p respectively. Let m
be the mazimal ideal of R; generated by m; and v; corresponding valuation of R; for
i =1,2. Let L; and K; be the fraction fields of R; and W (k;) for i = 1,2 respec-
tively. Suppose ng > M (R1)v1(p)va(p) and Hom(Ry ., Ra pn,) is not empty. Then
there exists a unique (nq,ng)-lifting Ly, n, : Hom(Rq pn,, R2.n,) — Hom(R1, Ra).
L, no (¢) is also an isomorphism when ¢ is an isomorphism.

Proof. Let S; be the set of Teichmiiller representatives of R;. By Lemma 2.8.(2), let
Gres : (W (k1) +mit)/mi* — (W (k2) +m5?)/m3? be the restrition map of ¢. For
an element a = > oo A.p" in W (ky), as in the proof of Lemma 2.8.(2), we define
Gres : W(k1) — W (k2) by gres(a) = > o2, 7-p" where 7, is a unique representative
of ¢res(Ar + m7T?) which is contained in S;. Then g,.s induces ¢p.s. By Lemma
2.3, L1 = K;(«) is totally ramified of degree v4(p) over K; where o = my. Let f
be the monic irreducible polynomial of « over K. The ring homomorphism g
induces the field homomorphism from K; into K5. We still denote the fraction
field homomorphism by g,es if there is no confusion. Then g,es : K1 — Ko is
an isometry. Let gres : K7 g K;lg be an extended field homomorphism of
gres- Then grcs is an isometry by Lemma 2.6. Let g,.s(f) be the monic irreducible
polynomial of gr.s(a) over Ks. If we write

f=2"®) 4 4 az+ag
=(z — 1)o@ — Ay ),
where a = a1, then
gres(f) =g1(P) + ...+ gres(al)x + gres(ao)
:($ _ g;“es(al))(x — %(avl(p)))

since [Ka(gres(@)) : Ka] < v1(p) and v2(gres(a)) = 1/v1(p). Let 8 be any represen-
tative of ¢(a + m]?). Since gres induces ¢y.s, we can write

0+my* = o(f(e) +my")
= ¢(a+mi) P 4 g(ar +m])d(a+mpt) + ¢lag + m])
= Gres(f)(B) + m3>.
This shows that gres(f)(8) is in m3? and
V2 (gres(f)(B)) = na > M(Ry)v1(p)va(p).

We claim that there exists an index ig satisfying 72(8 — gres(ai,)) > M(Ry). If
U2(B = gres(a;)) < M(Ry) for all 4, then

7 (gres(D(B) = 72 (H (8- g’T;mi))) < M(Ry)wn(p).

%

This shows
1] (gres(f)(ﬁ)) = VQ(p)&é(gres(f)(ﬁ)) S M(Rl)yl(p)l/Q(p)

Thus there is an index iy satisfying
U2 (B = gres(iy)) > M(R1) = max {0a(gres(a1) — gres(aj)) : 5 =2, ...,01(p) }
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where the equality follows from the fact that g,.s is an isometry. Hence, Krasner’s
lemma 2.11 shows K3 (gres(i,)) C Ka(f) C La. We define an extended homomor-
phism g : Ly — Ly of gres : K1 — Kz by the rule m — ¢(m1) = gres(ei,)- g
induces the restricted homomorphism from R; to Ro which is still denoted by g.
Since g,es induces ¢..s and

M(Ry) = max {72 (o (g(m)) = B) : o(9(m)) # g(m) |

by Lemma 2.10.(1), g is a (n1, ng)-lifting of ¢.
Suppose that g1 : Ry — R is a (n1, ne)-lifting of ¢ other than g. Then we have

72 (g (m1) = B) > max {7 (o(a1(m)) = B) s 09 (m)) # 9(m) |

by the first condition of the definition of liftings. By the second condition of the
definition of liftings and by Theorem 2.2, we obtain the restriction g1 |y 1, of g1 to
W (k1) is equal to g|w (,). This shows that the monic irreducible polynomial g (f)
of g1(m1) is equal to the monic irreducible polynomial g(f) of g(71) and

{a(gl(m)) io € HOHIKZ(LQ,L;lg)} = {a(g(m)) io € Hosz(Lg,Lglg)}.

In particular g, (m;) = o(g(m)) for some o € Homp, (Ls, L3). But since g (1) #
g(m1), we have the inequalities 72(g: (w1) — 8) > 7 (g(m) — ) and 7a(g (m1) — B) <
U3(g(m) — B) simultaneously. This gives a contradiction. Hence we obtain the
uniqueness of the lifting.

When ¢ is an isomorphism, so are ¢,s and g.s. We obtain [Ly : K] = [Ly : K1,
and hence, Ly, n,(¢) is also an isomorphism.

O
We note that the proof of Theorem 2.12 works for any representative 5 of ¢(m +

myt).
Example 2.13. (1) Let Ry = Z3[\/3] and Ry = Z3[\/=3]. There is no homo-
morphism between Ry and Rs by Kummer theory. But there is an isomor-

phism

p sV _ Z3[V-3]

¢ Ry = — Rop = ——Fix

3Z3[V3] 3Zs[v/=3]
given by the rule a + b\V/3 +— a + by/=3. Since v1(3) = 12(3) = 2 and
M(Ry) = 1 (V3 — (—V/3)) = 1/2, we obtain M(Ry)v1(3)v2(3) = 2. Hence
the lower bound for ny in Theorem 2.12 is the best possible in this case.

This phenomenon will be generalized in Proposition 3.11.

(2) If we take Ry = Ry = Z3[V/3] and ny = ny = 2n, then Ri9n = Raop =
(Z3/3"Zs3)[x]/(x* — 3). Then ¢ : a+bx — a+ (1+ 3" bz = ¢(a + bx)
defines an isomorphism between R; and Ry. But when n > 1, there is no
homomorphism g : Ry — Ry which induces ¢ since Galois conjugates of
V3 are £/3. This shows that in Theorem 2.12, we can not guarantee that
the following diagram is commutative:

L’!‘L n
R 1.m2 (0) Ry
¢

Rl n1 - R27n2

s
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Remark 2.14. (1) We regard Theorem 2.12 as a generalization of Theorem
2.2.(2). We can restate Theorem 2.2.(2) as follows. For ¢ : ki1 — ko, there
exists a unique homomorphism g : W (k) — W (ka) which is characterized
by the following property:

e For any x in W(ky), there exists a representative 3, of ¢(x+pW (k1))
which satisfies vo(g(x) — By) = oo.
In general, the property above does not hold as is seen in Example 2.13.(2).
But we can restate Theorem 2.12 as follows. For ¢ : Ry n, —> Ra n,, there
exists a unique homomorphism g : Ry — Ry which is characterized by the
following property:
o There exists N depending on Ry only such that for any x in Ry, there
exists a representative By of p(x+mi') which satisfies va(g(x) — By) >
N.
This follows from Proposition 2.10.(2).

(2) Suppose Ry = Ro = R, k1 = ko =k, nq = n2 =n, and v1 = vy = v.
When k is finite and ¢ is an isomorphism, Basarab([6]) claimed that if
n > M(R)v(p), Theorem 2.12 should hold by Krasner’s lemma. But it is
not correct by Example 2.13.(1). Moreover, there is a gap in the argument
with respect to the choice of uniformizer in [6].

In Theorem 2.12, M(R)e(R) can vary when R changes. The following lemma
will play an important role for bounding M (R)e(R).

Lemma 2.15. Let R C S be discrete valuation rings and S a finitely generated
R-module. Suppose S = R[a] for some « in S. Let f(x) in R[z] be the monic
wrreducible polynomial of o over R.
(1) The different ®g/r of S/R is a principal ideal generated by f'(c)
(2) Let B be the mazximal ideal of S. Let e be the ramification index of S over R
and vg the valuation corresponding to S. Let s be the power which satisfies
B* =Dg/g. Then one has

s=e—1 if S is tamely ramified,
e<s<e—1+4uwvg(e) if S is wildly ramified.
Proof. Chapter 3, Section 2 of [25]. O

The following theorem can be regarded as a generalized version of Theorem
2.2.(1) for the ramified case.

Theorem 2.16. Let R be a principal Artinian local ring of length n with perfect
residue field k of characteristic p and maximal ideal ™. Here length n meansm'™ = 0
and W"" # 0 which is denoted by I(R) = n. Suppose that R has no finite subfield
as a subring. For any positive integer a, if a generates an ideal M*, we denote k by
v(a). Suppose
I(R) =n>v(p) +v(p)v(v(p)).

Then there exists a complete discrete valuation ring of characteristic 0 which has
R as its n-th residue ring. Such a ring is unique up to isomorphism.

Proof. Any principal Artinian local ring is a homomorphic image of a discrete val-
uation ring. This can be proved by Cohen structure theorem for complete local
rings([19]) or, more directly, by the property of CPU-rings([17]). Since the com-
pletion of a discrete valuation ring R has the same n-th residue ring as that of R,
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we may assume that there are complete discrete valuation rings R; and Ry which
have R as isomorphic copies of R, and Ry, respectively. We note that R; is
of characteristic 0 for 4 = 1,2 since R has no finite subfield as a subring. Let L;
and K; be the fraction ﬁelds of R; and W(k;) for i = 1,2 respectively. Then by
Lemma 2.3, L; = K;(«) where o = 7 is a uniformizer of R;y. Let f be the monic
irreducible polynomial of o over K;. Then one can write

f=2"® 4+ 4 a1z+ag
=2 — a1)..(v — ayp)
where @ = «a3. Let v; be the corresponding valuation of R;. We note that

v1(p) = va(p) = v(p) since R has no finite subfield as a subring. We consider
the differentiation f’ of f. There are two cases.

e Tame case: Suppose Ly/K; is tamely ramified. Hence, v(v(p)) =
all distinct ¢ and j, 71(a;) = 1/v(p) and hence 171 (ay; — o) > 1/v(p ) We

obtain
7 (') =0 | [J(n =)
J#1
= Z 171(a1 — Oéj)
Jj#1
v(p) —1
= )
Since

-1

)
by Lemma 2.15, 11 (a1 — o) = 1/v(p ) M(Ry) for j # 1. Hence we have

v(p) +v(p)v(v(p)) = v(p)
= M(Ry1)v(p)®
and Theorem 2.12 finishes the proof.

e Wild case: Suppose Li/K; is wildly ramified. Since vi(a; — o) > 1/v(p)
for all distinct ¢ and j,
v(p) —2

M(Rl) < 171(.][/(0[1)) - V(p)

vip) —1+v(v(p) wvip)—2
v(p) v(p)
_ 14+ v(v(p))
v(p)

by Lemma 2.15, and hence, M(R;)v(p)? < v(p) + v(p)v(v(p)). Again
Theorem 2.12 finishes the proof.

O

Note that the notation v(p) in Theorem 2.16 is compatible with the previously
defined valuation. Suppose that a discrete valuation ring R with valuation v and
maximal ideal m has R as its residue ring. Then v(p) is equal to the power of
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the maximal ideal generated by p, that is, Rp = m*(?) as we noted in the proof of
Theorem 2.16.

3. FUNCTORIALITY

For a prime number p, let C,, be a category consisting of the following data :

e Ob(Cp) is the family of absolutely unramified complete discrete valuation
rings of mixed characteristic having perfect residue fields of characteristic
[ ] i/[OI‘cp (Rl, RQ) = HOIIl(]%l7 Rg) for R1 and R2 in Ob(Cp)
Let R, be a category consisting of the following data :
e Ob(R,) is the family of perfect fields of characteristic p.
e Morg, (k1, k) := Hom(ky, k2) for ki and ks in Ob(R,).
Let Pr : C, — R, be the canonical projection functor. We restate Theorem 2.2
categorically as follows :

Theorem 3.1. There exists a functor L : R, — C, which satisfies:

e The composite functor ProL is equivalent to the identity functor Idg,,.
o The composite functor Lo Pr is equivalent to the identity functor Idc, .

The main purpose of this section is to give a generalized version of Theorem 3.1
for the ramified case. For a prime number p and a positive integer e, let C, . be a
category consisting of the following data :

e Ob(Cp,) is the family of complete discrete valuation rings of mixed charac-
teristic having perfect residue fields of characteristic p and the ramification
index e; and

L] MOI‘cpwe (Rl, RQ) = Hom(Rl, RQ) for R1 and Rg in Ob(cp&).

Let R} . be a category consisting of the following data :

e For n < e, Ob(R},) is the family of principal Artinian local rings R of
length n with perfect residue fields of characteristic p, and for n > e,
Ob(R; ) is the family of principal Artinian local rings R of length n with
perfect residue fields of characteristic p such that p € m® \HEH where m is
the maximal ideal of R; and

e Morgn (R1,Rz) := Hom(Ry, Ry) for Ry and R, in Ob(R}., ),

Note that for e;,e2 > 1 and for n < ey, es, two categories ’Rgm, RZ&Q are the same.
For each m > n, let Pr,, : Cp. — Ry, and P’ : R}’ — Ry . be the canonical

p,e
projection functors respectively.

Definition 3.2. Fiz a prime number p and a positive integer e.

(1) We say that the category Cyp . is n-liftable if there is a functor L : R} . —
Cp,e which satisfies the following:
e (Pr,oL)(R) ¥ R for each R in Ob(R,.).
e PrioL is equivalent to PrY.
o LoPr, is equivalent to Idc,, , .
We say that L is a n-th lifting functor of C, ..
(2) The lifting number for C, . is the smallest positive integer n such that Cp .
is n-liftable. If there is no such n, we define the lifting number for C, . to
be co.
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Remark 3.3. (1) In Definition 3.2, the restriction of L to Iso(R,,) is a surjec-
tive group homomorphism from Iso(R,,) to Iso(R) for each R € Ob(Cp ).

(2) Suppose that there is a n-th lifting functor L : Ry . — Cp.. For any R in
Ob(Ry.e), up to isomorphism, L(R) is a unique object in Ob(C, ) which
has R as its n-th residue ring. Suppose that R in Ob(Cp.) has R as its
n-th residue ring. Since Lo Pr, is equivalent to the identity functor Ide
R =1dc, . (R) is isomorphic to (LoPr,)(R) = L(R).

(3) The lifting number for C, is 1 by Theorem 3.1. We will see that the lifting
number for Cp . is always larger than e whenever e > 1 in Corollary 3.17.
Forn > e, we have that a functor Ly, 1 == Ly, oPr™™ is a (n+41)-th lifting
functor of Cpe for any n-th lifting functor L, : Ry, — Cpe. For R in
Ob(Rpt!), there exists a ring R in Ob(Cpc) which satisfies Prpy1(R) = R
as noted in the proof of Theorem 2.16. Since there is a unique object in
Ob(Cp.e) which has Pr,(R) as its n-th residue ring by Remark 3.3.(2), we

have

(Prpq10Lnt1) (R) =Pryqq 0 (Ly, oPr*1) (R) =Pr,11(R) = R.

p,e’

Pri oL, = (Pry oL,) o Prl'™! is equivalent to Pr} o Pritt = Prit! and

Lyy10Pryi =(Lyo PrZJrl) o Pr,41 = Ly, o Pr,, is equivalent to Idc, ..

Proposition 3.4. For 1 < i < 3, let R; be a complete discrete valuation ring
of characteristic 0 with perfect residue field of characteristic p. Let m; be the
mazimal ideal of R; generated by m; and v; corresponding valuation of R;. For
oL? Rin, — Ron, and >3 Ry n, — R3 ., suppose that there are liftings
g2 1 Ry — Ry and g*3 : Ry — Rz of ¢52 and ¢*® respectively. If vi(p) = va(p),
then g = g>30g"? is a lifting of $>30¢12. Moreover g is a unique lifting of p>3op'?
when ng > M (Ra)va(p)vs(p) and ng > M(Ry)v1(p)va(p).

Proof. By Lemma 2.9, M (R;) is equal to M(Rz), say M. Since g*? is a lifting of
@12, there is a representative 8 of ¢1:2(my +m]*) such that v5(gh?(m1) — B1) > M.
We note that ) is a uniformizer of Ry. Since ¢>3 is a lifting of ¢22, there is a
representative B2 of (¢?3 0 ¢1:?)(m +mit) = ¢?3(B1 +m5?) such that v3(g>3(61) —
B2) > M. If we write g"?(m1) = B1 + xa where Uz(zpr) > M, then g(m) =
9> (g"%(m)) = ¢>*(B1 + xm). Since U3(g>*(61) — B2) > M and v3(9*%(xnr)) =
172(‘1:M) > M7

U3(g(m) — B2) = v3(g%(B1) — B2 + g% (xar)) > M.

The equality (¢*% 0 ¢?),cq,1 0 pry y = prz, og follows directly from g = g*% o g"2
By Definition 2.7 and Proposition 2.10, g is a lifting of ¢ o ¢!:2.
When ng > M(Ra)v2(p)vs(p) = M(R1)vi(p)vs(p) and ny > M(Ry)vr(p)v2(p),
¢ is a unique lifting of ¢?3 o 12 by Theorem 2.12.
U

Corollary 3.5. Let e > 1 and R € Ob(Cp.). Suppose n > M(R)v(p)%. Let
Pr™" |1so(r) : Iso(R) — Iso(Ry,) be the natural projection map. Then there exists a
surjective group homomorphism

L,, : Iso(R,) — Iso(R)
which satisfies Ly, o(pr™" |1so(r)) = Idiso(r) -
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Corollary 3.6. Let Ry be in Ob(Cpe,) and Ry in Ob(Cpe,). Suppose ng >
M(R1)vi(p)va(p) and Hom(Ri r,, Ron,) is not empty. Then Hom(Ri n,, Ran,)
and Hom(R1, Ry) are right Iso(Ry n, )-sets and there exists a surjective Iso(Ry p, )-
map
Ln1,n2 : }IOI'H(RL”1 s R27n2) — HOIII(]%l7 RQ)
such that
Lnl,nz o prnl’712 = IdHom(Rl,Rg)
where pr"™2 : Hom(Ry, Ry) — Hom(Ry ., Ran,) is the natural projection map.

Proof. Tt is clear that Hom(Rj y,, R2.n,) is a right Iso(Rj ,, )-set. By Lemma 2.5,
we have ny > M(R1)v1(p)?. Since Hom(Ry, Ry) is a right Iso(R;)-set, Hom (R, Ra)
is a right Iso(Ry ,, )-set via L,, : Iso(R,,) — Iso(R) by Corollary 3.5. Moreover, by
Proposition 3.4, the lifting map Ly, ,, is a Iso(Ry p, )-map. O

Lemma 3.7. Let R C S be discrete valuation rings and S a finitely generated R-
module. The discriminant Dg/r of S/R is equal to the norm Norm(®g/r) of the
different Dg/r of S/R.

Proof. Chapter 3, Section 2 of [25]. O

Even though next corollary directly follows from Corollary 3.6, we state here be-
cause it is useful for numerical calculations.

Corollary 3.8. Let Ry and Rs be complete discrete valuation rings of character-
istic 0 with perfect residue fields of characteristic p. Let m; be the mazimal ideal
of R; generated by m; and v; corresponding valuation of R; for ¢ = 1,2. Let L;
and K; be the fraction fields of R; and W (k;) for i = 1,2 respectively. Suppose
Hom (R n,, Ron,) is not empty. Then there is a surjective Iso(R1 n,)-map

Ly ny : Hom(Ry 1y, R2n,) — Hom(Ry, R2)
such that

Lnl,”z o prnl’
if one of the following holds :
e [1/K; is a Galois extension.
1 s the least number such that the i-th ramification group G; of Gal(Ly /K1)
vanishes.
ng > l/g(p)i.
e ny > v2(p) + v2(p)ri(vi(p)).
e ny > V2(DRr,yw(k,)) where Dg, jwk,) is the discriminant of Ry /W (k).
Here v2(DRr, jw (k,)) means va(p®) where Dr, jw(x,) = p*W (k1).

Proof. e We recall that G; is defined by G; = {0 € Gal(L1/K1) : v1(o(m) —
m1) > ¢+ 1}. Then i is equal to M(Ry)v1(p).
e By Lemma 2.15, one can obtain

"? = IdHom(Ry,Rs)

M(Ry) <o (f'(a)) — 1/1511)21))2
vi(p) = L+ui(n(p)  wi(p) -2
- v1(p) vi(p)

141 (Vl (p))
v1(p)
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as in the proof of Theorem 2.16. Hence,

M (Ry)v1(p)va(p) < va(p) + va(p)vi (v1(p)).

e Let Dg, /w(x,) be the different of Ry /W (k1). Then one can obtain that

vo(Dr, jw (k) = V2(P)V2(DRr, yw (k1))

|
S

(p)va(

2(P)V1 (DR, yw (k1))

2(P)v1(P)V1 (D Ry yw (k)
z(p)Vl(P)V1( ( ))

> vo(p)va(p) M (R1).

I
N
N

I
N

The second equality follows from the fact that v; is normalized, the third
equality follows from Lemma 3.7 and the fourth equality follows from
Lemma 2.15 where f is the monic irreducible polynomial of 71 over Kj.

O

Theorem 3.9. The lifting number for C, . is finite. More precisely, Cp. is (e +
ev(e) + 1)-liftable. Here v(e) denotes the exponent n such that e generates an ideal
m” of R in Ob(C, ) where m denotes the mazimal ideal of R. v(e) depends only on
the prime number p and the ramification index e, in particular v(e) is independent
of the choice of R in Ob(Cpe).

Proof. Suppose n is bigger than e + ev(e). For any R, R; and Ry in Ob(R;} ), by
Theorem 2.16, we define L, (R) to be a unique ring R in Ob(C, e) which satisfies
Pr,(R) = R. As in the proof of Theorem 2.16, e + ev(e) > M(R)e?. By Theorem
2.12, for any ¢ : R — Ry, there exists a unique n-th lifting map L((b) L(R;) —

(Rg) and hence we obtain a functor L, : R, — C, . by Proposition 3.4. By
Definition 2.7, L,, is a lifting functor.

p,e

O

Remark 3.10. For a fized absolutely unramified valued field K, M (L)e(L) can be
arbitrarily large when extension degrees [L : K| vary. For example, we can take
L =Qu(¢pn) and K = Q,. More generally, if L runs through subfields of a deeply
ramified extension of a local field K (see [10] for the definition of deeply ramified
extensions), then M(L)e(L) can be arbitrarily large. But Lemma 2.15 and the
proof of Theorem 2.16 show that M(L)e(L) must be bounded if we fix [L : K].
Hence we deduce the finiteness of the lifting number for Cp ..

Example 2.13.(1) can be generalized as follows.

Proposition 3.11. Let Ry /W (k) and Ro/W (k) be totally ramified extensions of
degree e. Then R . is isomorphic to Ry . as W (k)-algebras.

Proof. Let m; be a uniformizer of R; and v; the valuation corresponding to R; for
i = 1,2. By the theory of totally ramified extensions(see Chapter 2 of [24] for
example), the monic irreducible polynomial f; of m; over W (k) is an Eisenstein
polynomial for i = 1,2. If we write f; = a¢ + am_lfce’l + ...+ a;1% + a;0, then
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vi(p) = vi(aio) = e and v;(a; ;) > efor i =1,2 and j = 1,2,...,e — 1. This shows

- Wk)[mi]
Rz,e (71—2')6
~ W(k)[x]

(p, fi)
B ko]
(x¢ + ...+ a; 12+ aio)
klz]
- (ae)’

and hence, Ry . is isomorphic to Ry . as W (k)-algebras.

O

Now we focus on tamely ramified extensions. For the tame case, we can calculate
the lifting number.

Lemma 3.12. For a perfect field k of characteristic p, let K be the fraction field
of the Witt ring W (k) of k. For a positive integer e prime to p, suppose that there
is a prime divisor | of e such that (i is in k™ and (n+1 1s not in k* for some n.
Then there are two totally ramified extensions L1 and Lo of degree e over K which
are mot isomorphic over Q.

Proof. ¢ is in W (k)™ and (pn+1 is not in W(k)* by Hensel’s lemma. Then Ly =
K(¢/p) and Ly = K(y/p(n) are totally ramified extensions of degree e over K.
Suppose that there is an isomorphism o : Ly — Lj;. Since Galois conjugates
of ¢/p and (un over Q are ¢/p¢t and (7, for each i and j where j is prime to e
respectively,

o (/06 ) = o (/) = /BCh

for some k prime to [. In particular, L; contains both /p and /p( 51"7 and hence,
(in+1 is in Ly. This is a contradiction since Ly /K is totally ramified.
O

Corollary 3.13. Suppose that p does not divide e and e > 1. Then e + 1 is the
lifting number for Cp ..

Proof. Since v(p) =0, e+ev(e)+1 = e+1. By Theorem 3.9, C, . is (e+1)-liftable.
Let IF, be the prime field of p elements. Let K be the fraction field of the Witt ring
W (k) of k = Fp(¢.). By Lemma 3.12, there are two totally ramified extensions L,
and Lo of degree e over K such that there is no isomorphism between L and L.
If Cp, . is e-liftable, L; and Lo are isomorphic over K by Proposition 3.11 and it is
a contradiction. O

Remark 3.14. Proposition 3.11 and Corollary 3.13 show the difference between
the unramified case and the tamely ramified case. We can regard the absolutely
unramified valued fields of mized characteristic as the absolutely tamely ramified
valued fields having the ramification index e = 1. If we apply the formula e + 1 in
Corollary 3.13 to C,, the lifting number for C,, should be 1+1 = 2. But the argument
in the proof of Corollary 3.13 does not work for C,. For an absolutely unramified
complete discrete valued field K, there is a unique totally ramified extension of
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degree 1 over K, that is, K itself. Hence the fact that the lifting number for C, is
1 does not disagree with Corollary 3.13.

For the wild case, we have the following example. Let Ry = Zy[v/2] and Ry =
Z5]v/10]. There is no homomorphism between Ry and Ry by Kummer theory. But
there is an isomorphism between R; ¢ and Rs ¢ since

_ LaV?) |, Zsla]

16 (\/56) (22 —2,8)
Zolx] Zo[V10]

= (x2 — 107 8) = (\/iG) — 2,6+
This shows that the lifting number for Cs 5 is 2+ 2v(2) +1 =7 > v(2) by Theorem
3.9. In general, we have the lower bound e + 1 of the lifting number for the wild
case. For proving this, we need the following lemma.

Lemma 3.15. For a perfect field k of characteristic p, let K be the fraction field
of the Witt ring W (k) of k. Let e be a positive integer divided by p. Then there
are two totally ramified extensions Ly and Lo of degree e over K which are not
isomorphic over Q.

Proof. We write e = sp” for some positive integers s and r where s is prime to
p. Let Qx/Q be the cyclotomic Z,-extension, in particular Gal(Qw/Q) = Z,.
Let M, be a unique subfield of Q. such that [M, : Q] = p". By the theory of
cyclotomic fields(See for example Chapter 1 of [25]), the Galois extension M, /Q is
totally ramified at the place above p. Let a be a uniformizer of M, corresponding
to the place above p. Since, M, /Q is a Galois extension, M, = Q(a) = Q(c(«))
for any embedding 0. We fix an embedding Q9 C K9,

Let Ly = K(p'/¢) = K(p'/*,p*/?") and Ly = K(p'/*,a). Then L; and L, are
totally ramified extensions of degree e over K. If there is an isomorphism o : Ly —
Ly, Ly contains both o(a) and p/?". Since Q(a) = Q(o(a)), K(o(a)) = K(a) is
contained in L;. We note that [K(p'/?",a) : K(p*/?")] divides [K(a) : K] = p"
since K («a)/K is a Galois extension. Since

= o ()] = [ ) e ) )]

[K(p'/?",a) : K(p'/*")] divides s. Hence we obtain [K(p'/?",a) : K(p*/?")] =
ged(s,p”) = 1. This shows K (p'/?") = K(a) since [K(p*/?") : K] = [K(a) : K].
This is a contradiction, and hence, I.; and Ly are not isomorphic. O

Proposition 3.16. Let p be a prime number and e be a natural number divided by
p. Then the lifting number for Cp . is bigger than e.

Proof. By Lemma 3.15, there are two totally ramified extensions L; and Lo of
degree e over Q, such that there is no isomorphism over Q, between L, and Lo. If
Cp,c is e-liftable, Ly and Ly are isomorphic over Q,, by Proposition 3.11 and it is a
contradiction. Hence, the lifting number for C, . is bigger than e.

O

Corollary 3.17. The lifting number for Cp . is bigger than e whenever e > 1.
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Although we have the lower bound e + 1 and the upper bound e 4 ev(e) 4+ 1 of the
lifting number for C, ., we have no clue to calculate the lifting number explicitly
for the wild case.

Question 3.18. What is the lifting number for the wild case ?

Remark 3.19. When e > 1, for a lifting functor L, : Ry, — Cp. and R in
R any complete discrete valuation ring R which has R as its n-th residue ring
necessarily has ramification index e and equal to L, (R) by Corollary 3.17. But
for the lifting functor L : R, — C, in Theorem 3.1, there is no information on
ramification indices in Ob(R,). Really there are many complete discrete valuation
rings with different ramification indices which have the same residue field. For
example, Ry = Z3[\3/§] and Ry = Z3[\2/§] have the same residue field, but their

ramification indices are different.

n
p,e’

For a fixed set N = {n, € N}.cn, if we try to make a unified lifting functor from
Ry =, Ry to C:= U, Cp,e, we can not apply our method to get such a functor
since M (R, )e is unbounded as varying e and R. € Ob(C), ). But we have a unified
functor for a finite set of ramification indices.

Corollary 3.20. For a finite set {eq,...,es} of ramification indices, there is a finite
set of natural numbers {ni,..,ns} such that there exists a lifting functor
L: U R;L,kek - U C;L,kek
1<k<s 1<k<s

Proof. Follows from Lemma 2.5, Proposition 3.4, Corollary 3.8 and Theorem 3.9.
O

4. AX-KOCHEN-ERSHOV PRINCIPLE FOR FINITELY RAMIFIED VALUED FIELDS

Our main goal in this section is to prove a strengthened version of Basarab’s
result on the AKE-principle for finitely ramified valued fields in the case of perfect
residue fields. Firstly, we quickly review the basic results in model theory of valued
fields, concentrating on the AKE-principle. We take the language of valued fields,
which consists of three types of sorts for valuation fields, residue fields, and value
groups. Let Lx = {+,—,-;0,1} be the ring language for valued fields, £, =
{+/,-',;0’,1'} be the ring language for residue fields, and Lr = {+*;0*; <} be the
ordered group language for value groups. Let L, = Lx ULy ULp be the language
of valued fields. Next, we consider an extended language of £,,; by adding the ring
languages for the n-th residue rings. For each n < 1, let Lr, = {+n, —n, n;On, 1n}
be the ring language for the n-th residue ring. For n = 1, we identify Lr, = L.
We get an extended language Lyair = Lo U U,>; Lr, for valued fields. Let
(K1,v1,k1,T1) and (Ka, va, ke, I's) be valued fields, and let Ri », and Ry ,, be the n-
th residue rings of (K7,v1) and (Ka, 1) respectively. We say (Ki,v1) and (Ko, v9)
are elementarily equivalent if they are elementarily equivalent in L,q;. If (Kq,11)
and (Ko, 1) are elementarily equivalent, then they are elementarily equivalent in
Lyar,r because the n-th residue rings are interpretable in L,4;. For (Ki,1v1) and
(K3, v2) which are elementarily equivalent, it necessarily implies that

e ki and ko are elementarily equivalent in Lg;
e ['; and I's are elementarily equivalent in Lr; and
e Ry, and Ry, are elementarily equivalent in Lp, for each n < 1.
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Ax and Kochen in [4], and Ershov in [14] proved the fact that these conditions on
the residue fields and the value groups imply elementary equivalence for unramified
valued fields:

Theorem 4.1. [4, 14](The Az-Kochen-Ershov principle) Let (Ki,v1,k1,T1) and
(Ka, v, ko, T's) be unramified henselian valued fields of characteristic zero.

Ky, = Ks if and only if ki1 = ke and I'y = T's.

Basarab in [6] extended Theorem 4.1 for henselian valued fields of finite ramification
indices, including local fields of characteristic zero.

Theorem 4.2. [6] Let (K1,v1,k1,T1) and (Ka, 12, ko, I's) be henselian valued fields
of mized characteristic having finite absolute ramification indices. The following are
equivalent :

(1) K1 = K2.

(2) Rin = Ro, foreachn <1 andTy =T\.

Next we review on the coarse valuations. For the coarse valuations, we refer to
[13, 20, 27, 30].

Remark/Definition 4.3. [27] Suppose (K,v,k,T") has the finite absolute ramifi-
cation index so that the value group has the minimum positive element, and let
be a uniformizer so that v(rm) is the smallest positive element in T'. Let T'° be the
convez subgroup of I' generated by v(w) and v : K\ {0} — T'/T° be a map sending
2(#0) € K tov(z)+T° € T/T°. The map v is a valuation, called the coarse
valuation. The residue field K°, called the core field of (K,v), of (K,v) forms a
valued field equipped with a valuation v° induced from v and the value groups I'°.
More precisely, the valuation v° is defined as follows: Let pr, : R, — K° be
the canonical projection map and let © € Ry,. If 2° := pry(z) € K°\ {0}, then
v°(z°) :=v(x). And 2° =0 € K° if and only if v(xz) > v for all v € T°.

Lemma 4.4. (1) Let R,, R;, and R,o be the valuation rings of (K,v), (K,v),
and (K°,v°) respectively. Then (pry) 1 (R,o) = R,.

(2) Let R, and RS be the n-th residue rings of (K,v) and (K°,v°) respec-
tively. Then there is a canonical isomorphism 0, : R, — RY such that
pr¥ o(pry |g,) = O o pr,, where pr, : R, — R, and pr’, : R,o — RS
are the canonical projection map.

(8) If (K,v) is henselian, then (K,v) is henselian.

(4) If (K,v) is Ry -saturated, then (K°,v°) is complete.

Proof. (1) Note that R, := {z € K| v(z) > 0} = {z € K| v(z) > ~ for some v €
I'°}. Let x € Ry be such that pr,(x) =: ° € Ry0, that is, v°(z°)(e I'°) > 0. If
2° =0, v(x) >~y foralyel°and z € R,. If z° # 0, then v°(z°) = v(z) > 0 in
I'° ,and hence v(z) > 0 in T'. Thus « € R,.. Therefore, for € R;, € R, if and
only if 2° € Ryo0.

(2) Note that each 6, is induced from pr; |g, : R, — R,o. It is easy to see
that each 0,, is surjective. To show that 6,, is injective, it is enough to show that
v(z) > n if and only if v°(z°) > n for x € R,. It clearly comes from the definition
of v° in (1).

(3)-(4) Section 5 of [20]. O

Proposition 4.5. Let (Ki,11,T1) and (Ka,v2,T'2) be valued fields. Let Ry, and
Ry, be the n-th residue rings of K1 and Ky respectively. Suppose
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o Rip =Ry, foreachn >1;

L] Fl = FQ
Then there are N1-saturated elementary extensions (K1,v1,T) and (K4, v5,T%) of
Ky and Ko such that

° R'Ln =R, forn>1;

o I =T

/

, where R}, and Ry ,, are the n-th residue rings of Ki and Ky respectively.

Proof. We inductively construct chains of valued fields (K}, T'%);c., and (K5, T%);c.,
and isomorphisms f; : Rﬁyj — R’Q’j for 0 < i and 1 < j < i, where Rllyj and Réyj
are the j-th residue rings of K} and K3 respectively such that for ¢ € w,

(1); Ki < Ki™ and K < K3

(2); & c &g for1<j<i;

(3); I'p =1T%.
Recall the Keisler-Shelah isomorphism theorem :

Theorem 4.6. (Keisler-Shelah Isomorphism Theorem) Let M and N be two first
order structures. If M = N, then there is a ultrafilter U on an infinite set I such
that

MU= NU
where MY and NY are the ultrapowers of M and N with respect to U.
Proof. See [11]. O

Since I'y = I', by Theorem 4.6, there is an ultrafilter U, such that FZ{{O ~ I‘g"’. Set
(K9, T9) = (K% T%) and (K9,T9) = (K5°,T%). Assume we construct sequences
of valued fields (K{,T)i<m and (K35,T%)i<m with isomorphisms &% : R} ; — R} ;
for 1 < j <4 <m for some m > 0 satisfying the conditions (1);, (2);, and (3); for
i < m. Since R, 1 = Ry, 1, from Theorem 4.6, there is an ultrafilter ¢/ such
that E0L7 ¢ (R p)” = (R, )%, Set K7™ = (K{") and K3'" = (K3")Y,
and set f;”“ = (&MY Rffl — Rgf;rl for each j < m, where R’fjl = (R,
and Rgf;rl = (Ry,)Y. Set 7t = (D) = (D) = T5FL. Then the sequences
of valued fields (K1, T7)i<m+1 and (K3, T%)i<m+1 with isomorphisms &} : Ry ; —
Ry ; for 1 < j <4 < m+ 1 satisfying (1);, (2);, and (3); for i < m + 1. By
induction, we get chains of valued fields, (K7 );>0 and (K3);>0 with isomorphisms
&, - R}, — Ry, for 1 <n <isatisfying (1);, (2);, and (3); for i > 0.

Next consider the unions K¢ := |J K} and KY := |J K&, which are elementary
extensions of K7 and Ks respectively. Each n-th residue ring Ry, is the union of
Rj, s for k =1,2. For each n > 1, define & := J&), : R} ,, — R5,,. By (2);, the
ma:p &, is a well-defined isomorphism from R, to Rg,. Hence K{’ and K% have
the isomorphic n-th residue rings for each n. At last to get Nj-saturated valued
fields, consider an ultrapower K‘,;’H = (K,‘:)u/ with respect to a nonprincipal U’

on w for k= 1,2, and K¢ and K5+ are desired valued fields. O

By combining Theorem 4.1 and Lemma 4.4, Proposition 4.5, we reduce the problem
on elementary equivalence between henselian valued fields of mixed characteristic
having finite ramification indices to the problem on isometricity between complete
discrete valued fields of mixed characteristic whose the n-th residue rings are iso-
morphic for each n > 1. Now we improve Theorem 4.2.
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Theorem 4.7. Let (K1,v1,k1,T1) and (Ka,vs, ko, T'1) be henselian valued fields of
mixed characteristic with finite ramification indices. Suppose k1 and ko are perfect
fields of characteristic p > 0. For n > 1, let Ry, and Ry, be the n-th residue
rings of K1 and Ky respectively. Let ng > max{e,, (p)(1 + ey, (ey, (p)), ev, (p)(1 +
v, (v, (p))}- The following are equivalent:

(1) Kl = KQ,'

(2) Ty =T3 and Ry, = Ray for each n < 1; and

(3) Fl = FQ and Rl,no = R2,n0-

Proof. Let (K1,v1,k1,T'1) and (Ks, v, ko, T'2) be henselian valued fields of charac-
teristic zero with the finite ramification indices so that I'; and I's have the minimum
positive elements. Suppose k1 and ky are perfect fields of characteristic p > 0. It is
easy to check (1) = (2) = (3). We show (3) = (1).

(3) = (1). Suppose Rin, = Raon, and I'1 = I's. By the proof of Proposition
4.5, we may assume that Ry ,, = Ra,, and I'1 = I'y, and that (K,14,T'1) and
(Ks,v5,9) are Ny-saturated. Consider the coarse valuations 77 and vy of vy and
vy respectively and the valued fields (Ky,01,T1/TY) and (K2, 02, T'2/TS), where 'Y
is the convex subgroup of I'; generated by the minimum positive element in I'; for
i =1,2. Since (Ki,v1) and (Ko, 1v9) are Ny-saturated, by Lemma 4.4.(4), the core
fields (K7,v5) and (K3,v5) are complete discrete valued fields, where v and v§
are the valuation induced from v and v, respectively. Since the ng-th residue rings
of (K1,v1) and (K, 1) are isomorphic, by Lemma 4.4.(2), the ng-th residue rings
of (K{,vy) and (K3,vs) are isomorphic.

By Theorem 2.12 and the proof of Theorem 2.16, K7 and K5 are isomorphic.
Since I'; 2 T'y, Ty /TS = T'y/T'5. Therefore by Theorem 4.1, (K1,11) = (Ko, %).
To get that (Ki,v1) = (Ko, 1), it is enough to show that the valuation rings R,,
of (Ky,v1) and R,, of (Ka,v2) are definable in (K7,71) and (K2, %) by the same
formula. We need the following lemma on a definability of valuation ring in the
ring language.

Lemma 4.8. Let (K,v) be a complete field of characteristic zero. Suppose the
residue field k is perfect and has prime characteristic p. Then the valuation ring
R, of (K,v) is definable by the formula

bq(x) =Ty y? =1+ pa?

for some q > 0 such that p fq and q > e, (p). For example, we can take q as p' + 1
for sufficiently large I > 0.

Proof. See [8]. O

Take | > 0 large enough so that ¢ := p! + 1 > max{e,, (p),e,,(p)}. By Lemma
4.8, ¢q(r) defines the residue rings R,o and R,; of (K7,v7) and (K3,v5). By
Lemma 4.4.(1), the valuation rings R,, and R,, are definable by the same formula
in (Kl,l)l) and (KQ,Z)l) so that (Kl, Vl) = (KQ,VQ). |

We give some corollaries of Theorem 4.7. At first, we improve the result in [5]
on a decidability of henselian valued fields of finite absolute ramification indices in
the case of perfect residue fields.

Corollary 4.9. Let (K,v,T") be a henselian valued field of mized characteristic
having finite absolute ramification index and the perfect residue field. Let R, be
the n-th residue ring of (K,v) for each n > 1. Let ng > e,(p)(1 + e, (e, (p)). Let
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Th(K,v) be the theory of (K,v), Th(I') be the theory of T, and Th(R,) be the
theory of R,,. The following are equivalent :

(1) Th(K,v) is decidable.

(2) Th(T") is decidable, and Th(R,,) is decidable for each n > 1.

(3) Th(T") is decidable, and Th(R,,) is decidable.

Proof. (1) & (2) It was already given by Basarab in [5].

(1) & (3) Let (K,v,T',k) be a henselian valued fields of mixed characteristic
having a perfect residue field k. Let p > 0 be the characteristic of k and let e(:=
e, (p)) be the absolute ramification index of (K, v). Suppose e is finite. Consider the
following theory 7}, . consisting of the following statements, which can be expressed
by the first order logic;

e (K,v) is a henselian valued field of characteristic zero;

e I' is an abelian ordered group having the minimum positive element;

e k is a perfect field of characteristic p > 0;

e (K,v) has the absolute ramification index e.
By Theorem 4.7, the theory T}, . U Th(I') U Th(R,, ) is complete. Thus Th(K,v) is
decidable if and only if Th(I') and Th(R,,) are decidable. O

Thus we get the following results on local fields of mixed characteristic.

Corollary 4.10. [5][6] Let (K1,v1) and (Ka,v2) be local fields of mized character-
1stic.

(1) (Kl,Vl) = (K271/2) = f : K1 = KQ.

(2) Th(K1,11) is decidable.

Next we recall the following definition introduced in [6]:

Definition 4.11. [6] Let T be the theory of a henselian valued field (K,v,T) of
mized characteristic having finite absolute ramification index e. Let N(T') € NU{oco}
be defined as the smallest positive integer n (if such a number exists) such that for
every henselian valued field (K',v',T') of mized characteristic having the same
absolute ramification index as (K,v,T'), the following are equivalent:

(1) (K',v,T")ET.

(2) T =T’ and the n-th residue rings of (K,v) and (K',v') are elementarily

equivalent.

Otherwise, A(T') = oc.

Question 4.12. [6] Let T be the theory of a henslian valued field of mized charac-
teristic having finite absolute ramification index. Is X(T) finite ?

It was proved that A(T") < oo for the theories T of local fields of mixed characteristic
in [6](but the statement and its proof are incorrect as we remarked in Section 2).
We give a positive answer when residue fields are perfect.

Corollary 4.13. Let (K,v) be a henselian valued field of mized characteristic hav-
ing finite absolute ramification index with perfect residue field. Let T be the theory
of (K,v). Then N(T) < e, (p)(1+ e, (e, (p)) + 1.

We compute explicitly A(T") for the theories T of some tamely ramified valued
fields. We say that an abelian group G is e-divisible (respectively, uniquely e-
divisible) when the multiplication by e map, e : G — G is surjective (respectively,
bijective). We denote the unit group of a ring R by R*.
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Lemma 4.14. Let (K, W(k),m, k) be an absolutely unramified complete discrete
valued field of mized characteristic (0,p) with perfect residue field k. Suppose that
k> is e-divisible for a positive integer e prime to p.
(1) If ¢ is contained in W (k), then there exists a unique totally tamely ramified
extension L of degree e over K.
(2) If (. is not contained in W (k), then there exists a unique totally tamely
ramified extension L of degree e over K up to K-isomorphism.

Proof. Let S’ be the group of nonzero Teichmiiller representatives of W (k) and
U™ =1+ m" the n-th principal unit group of W (k) for each n > 1. Since

U™ — ker <W("~‘)X - (W;(f))X)

and W(k):%n<ﬂ;(f))7
we have
W) =l (Z@)X - m(WU(f)))

—\u
Since U™ /U™+1) = k for each n > 1, a short exact sequence
00— — — — 0

U(n+2) U(n+2) Un+1)

shows that U™ /U (") is a p-group, and hence, uniquely e-divisible for each n. Hence,
UM is uniquely e-divisible and W (k)* = 8’ x UM is e-divisible since k* = §'.

(1) Suppose that (. is contained in S’. Then there is a unique totally tamely
ramified extension of degree e over K by Kummer theory since

K pExW(k)* _ Z
(KX)e px (W(k)¥)® €L’

(2) Suppose that (. is not contained in S’. For a totally tamely ramified extension
L of degree e over K, there is u in W(k)* such that L = K(¢/pu) by the theory
of tamely ramified extensions(see Chapter 2 of [24] for example). Since W (k)* is
e-divisible, there is v in W (k)* such that v® = u. Hence, ¢/pu = \e/f?vCé for some
i. This shows that L = K (¢/pu) = K(/p¢;) is isomorphic to K (/p) over K since
the irreducible polynomial of ¢/p over K is x¢ — p.

O

Proposition 4.15. Let (K,v,I',k) be a finitely tamely ramified henselian valued
field of mized characteristic with perfect residue field. Let e > 2 be the absolute
ramification index of (K,v). Let T be the theory of (K,v).
(1) If k* is e-divisible, then \(T') = 1.
(2) If there is a prime divisorl of e such that {;n € k™ and (jn+r & kK for some
n, and T is a Z-group, then \(T) = e + 1.



28 JUNGUK LEE AND WAN LEE

Proof. (1) Suppose k* is e-divisible. Let (K’,v/,T”, k’) be a henselian valued field of
mixed characteristic with a perfect residue field having absolute ramification index
e. Suppose k = k' and T' = I'V. By the proof of Proposition 4.5, we may assume
that k = k', ' 2 I", and both K and K’ are Ri-saturated. Consider the core fields
(K°,v°,k°) and ((K')°, (v)°, (K')°) of (K,v) and (K',v') respectively. Since k™ is
e-divisible, so is (k°)*. Then by Lemma 4.14, (K°,v°) = ((K")°, ()°). By the
proof of Theorem 4.7, we have (K,v) = (K’,v"). Thus A\(T) = 1.

(2) Suppose there is a prime divisor [ of e and a natural number n such that
Cn € E* and (n+r ¢ kK, and T' = Z. Let p be the characteristic of k and e be
the absolute ramification index of (K, v). Let T}, . be the theory introduced in the
proof of Corollary 4.9. Set Ty = T}, . U Th(I') U Th(R,). Consider the following
theories:

o 1 =ToU{Jz(z* —p=0)};

e Th =TyU {Exy((:z:e —py=0)AD;n(y) = 0)};

o Ts=TyU {—Elx(xe —p=0), —\ny((:re —py=0)AP;n(y) = 0)},
where & (X) € Z[X] is the ["-th cyclotomic polynomial. By the proof of Lemma
3.12, we have

e each pairwise union of T, Ts, and T3 is inconsistent;
e T7 and T are consistent;

and for a finitely tamely ramified henselian valued field (K’, v/, I", k") of mixed
characteristic (0,p) having absolute ramification index e, if ¥ = k, I” = T, and
R, = R, for the e-th residue ring R, of (K’,v'), then there is 7 € {1, 2,3}

o (K',V)ET,.
Since (K, v) = Ty and there are at least two different complete theories containing

Ty, we have A(T') > e + 1. By Corollary 4.13, we conclude that A(T) = e + 1.
U

For some wild cases, we have a lower bound for A(T)).

Proposition 4.16. Let p be a prime number and e be a positive integer divided by
p. Let (K,v,T, k) be a finitely ramified henselian valued field of mized characteristic
(0,p) having absolute ramification index e > 2. Suppose k is perfect and T is Z-
group. Then A(T) > e+ 1 for T = Th(K,v).

Proof. The proof is similar to the proof of Proposition 4.15. Let T}, . and Tj be the
theory introduced in the proof of Proposition 4.15. We write e = sp” for positive
integers s and 7 where s is prime to p. Let o € Q9 be in the proof of Lemma
3.15 such that « is a uniformizer of M, corresponding to the place above p where
M, = Q(«) is the r-th subfield of the cyclotomic Z,-extension Q of degree p”
over Q. Let f(X) be the minimal polynomial of « over Q. Consider the following
theories:

o I =ToU{Jz(z¢ —p=0)};

o I =Ty U{3z(z® —p=0), Iz(f(z) =0)};

o T3 =Ty U {-3z(z* —p=0),=(Iz(z* —p=0) AJz(f(z) =0)) }

By the proof of Lemma 3.15, we have

e each pairwise union of T, T5, and T3 is not consistent;
e T and T5 are consistent;



ON THE STRUCTURE OF CERTAIN VALUED FIELDS 29

and for a ramified henselian valued field (K', v, T”, k') of mixed characteristic (0, p)
having absolute ramification index e, if ¥’ = k, I' =T, and R, = R, for the e-th
residue ring R, of (K',v’), then there is ¢ € {1, 2,3}

o (K',V)ET,.
Since (K, v) = Ty and there are at least two different complete theories containing
To, we have \(T') > e+ 1. O

We list some special cases of Proposition 4.15 and Proposition 4.16. For a positive
integer s, we say that s> divides [k : F,] if there is a subfield k,, of k such that
[k, : Fp] is finite and s™ divides [k, : F,] for each n > 1.

Corollary 4.17. Suppose (K,v,T', k) is a finitely ramified henselian valued field of
mized characteristic (0,p) having absolute ramification index e > 2. Let T be the
theory of K. Let s be the order of the group . Nk* where . is the group generated

by Ce-
Case p fe.

o \(T) =1 when k = k%9;
o MT) =1 when K is a subfield of C,, and s> divides [k : F,];
o \T)=e+1 when K is a subfield of C, and s> does not divide [k : F].

Case ple.
o \T) >e+1 when K is a subfield of C,,.
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